
SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
Release 1.0.0

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

Oct 18, 2018

Contents

1 Project Setup 1

2 Style Guide 3

3 Visual Studio Code Environment 5

4 React Best Practices 7

5 Using SB-Components 39

6 Accessibility 41

7 Using NPM Link 43

8 Publish, Branching and Versioning 45

9 Site Styles 47

10 How to Commit 49

11 Changes 51

12 Roadmap 53

13 Project Overview 55

14 Indices and tables 57

i

ii

CHAPTER 1

Project Setup

1.1 Development Environment

• install node, npm included, here

• install vscode here

• Checkout VsCode for extensions

1.2 Cloning and Branching

1. Clone the project git clone https://github.com/osu-cass/sb-components

2. Checkout dev git checkout dev

3. Create a feature branch git checkout -b feat/{your-branch-here}

4. Create a PR!

1.3 Setup

1. run npm i to install dependencies

2. run npm run storybook to start development server

1

https://nodejs.org/en/
https://code.visualstudio.com/
VsCode

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

1.4 Development

1.4.1 Storybook

Each component is developed independently of the DOM using storybook. You’ll need to write a .storybook file to
develop your component.

2 Chapter 1. Project Setup

https://storybook.js.org/basics/writing-stories/

CHAPTER 2

Style Guide

2.1 General style

We follow AirBnb style guide listed [here] and Microsoft contribution library
rules.(https://github.com/airbnb/javascript/blob/master/react/README.md) Follow basic A11y guidelines

2.2 Cheatsheet

• Directories pascalcase DirectoryName

• File names pascalcase ‘FileName‘

• File extension for react is .tsx

• File extension for non-react is .ts

• Styles names are lowercase ‘filename.less’

• constants camelcase

• interface pascalcase

• interface members are camelcase

• No models except for props and state in tsx

• Component names don’t have a suffix “component”

• Containers names do have suffix “Container”

• Models have suffix “Model”

• One react component per file unless stateless

3

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4 Chapter 2. Style Guide

CHAPTER 3

Visual Studio Code Environment

3.1 Development environment

• install node, npm included, here

• install vscode here

3.2 Extensions

3.2.1 Required

• Add Document This here

• TSLint here

• Spell Checker here

• Prettier - Code Formatter here

• Jest here

3.2.2 Optional

• TypeScript Hero here

• Typescript React code snippets here

• JavaScript (ES6) code snippets here

• Git History here

• Git Lens here

• Visual Studio Keymap here

5

https://nodejs.org/en/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=eg2.tslint
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://marketplace.visualstudio.com/items?itemName=rbbit.typescript-hero
https://marketplace.visualstudio.com/items?itemName=infeng.vscode-react-typescript
https://marketplace.visualstudio.com/items?itemName=xabikos.JavaScriptSnippets
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vs-keybindings

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

6 Chapter 3. Visual Studio Code Environment

CHAPTER 4

React Best Practices

A collection of best practice guidelines for ReactJS. Prepared by Rob Caldecott

4.1 Contents

• JavaScript

• ESNext

• prop-types

• Stateless Functional Components

• Containers

• Higher Order Components

• Functions as Children

• Events

• Conditional Rendering

• Arrays

• Writing Components

• Unit Testing

• State

• Props

• Pure Components

• Project Structure

• Summary

7

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.2 JavaScript

A collection of JavaScript tips.

4.2.1 Stop using var

Use const and let instead. They have proper block scoping, unlike vars which are hoisted to the top of the
function.

let name = "John Doe";
name = "Someone else";
...
const name = "John Doe";
// This will fail
name = "Someone else";

4.2.2 Use object shorthand notation

state = { name: "" };

onChangeName = e => {
const name = e.target.value;
this.setState({ name });
// this.setState({ name: name });

};

4.2.3 Use string templates

const name = "John Doe";
const greeting = `Hello ${name}, how are you?`;

4.3 ESNext

You can take advantage of some next-generation JavaScript syntax right now, including:

• Async/await (ES7, ratified in June 2017)

– Useful when using promises and window.fetch

• Object rest/spread (stage 3 proposal)

– Destructure and make shallow copies of objects

• Class fields and static properties (stage 2 proposal)

– Initialise component state

– Auto-bound event handlers

8 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.3.1 async/await

Simplify your promise handling.

Before

const fetchIp = () => {
window
.fetch("https://api.ipify.org?format=json")
.then(response => response.json())
.then(({ ip }) => {

// We're done, here in this handler
this.setState({ ip });

})
.catch(({ message }) => {

// Special catch handler syntax
this.setState({ error: message })

});
};

After

const fetchIp = async () => {
try {
const response = await window.fetch("https://api.ipify.org?format=json");
const { ip } = await response.json();
// We're done: the code looks synchronous
this.setState({ ip });

} catch ({ message }) {
// Standard try/catch
this.setState({ error: message });

}
};

4.3.2 Object spread/rest

Use this to pull out useful properties from an object or make a shallow copy.

const { text, show } = this.props;
const { text, ...other } = this.props;
const copy = { ...data, additional: "value" };

4.3.3 Class fields and static properties

Make your React classes more readable:

class MyComponent extends React.Component {
state = { name: "" };

(continues on next page)

4.3. ESNext 9

https://codesandbox.io/s/9rnzgvMkY

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

onChangeName = e => {
this.setState({ name: e.target.value });

}
}

4.3.4 Component class skeleton

A typical component class using ESNext syntax looks like this:

class MyComponent extends React.Component {
static propTypes = { ... };

static defaultProps = { ... };

state = { ... };

onEvent = () => { ... };

classMethod() { ... }
}

4.4 prop-types

Always declare your props. Simply install the prop-types module from npm:

npm install --save prop-types

And then import the module into your component:

import PropTypes from "prop-types";

Using prop types ensures:

• Consumers of your component can see exactly what props are supported.

• Console warning are displayed when the wrong prop type is used.

• Props can be documented for use with react-styleguidist.

4.4.1 Example (class using ESNext static property support)

The following component supports two props: onClick which is a function and name which is a string and is a
mandatory prop.

import React from "react";
import PropTypes from "prop-types";

export default class Greeting extends React.Component {
static propTypes = {
onClick: PropTypes.func,
name: PropTypes.string.isRequired

};

(continues on next page)

10 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

render() {
return (

<h1 onClick={this.props.onClick}>
Hello, {this.props.name}

</h1>
);

}
}

4.4.2 Example (stateless functional component)

When using a stateless functional component you need to declare prop types on the function object itself:

import React from "react";
import PropTypes from "prop-types";

const Greeting = props =>
<h1 onClick={props.onClick}>
Hello,{props.name}

</h1>;

Greeting.propTypes = {
onClick: PropTypes.func,
name: PropTypes.string.isRequired

};

export default Greeting;

4.4.3 Use destructuring to import specific prop types

You can also use destructuring to import just the prop types you need. This can save typing, especially when using
props of the same type.

For example, here is the above stateless functional component example rewritten:

import React from "react";
import { func, string } from "prop-types";

const Greeting = props =>
<h1 onClick={props.onClick}>
Hello,{props.name}

</h1>;

Greeting.propTypes = {
onClick: func,
name: string.isRequired

};

export default Greeting;

4.4. prop-types 11

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.4.4 Using object shapes and arrays

You can also specify the shape of an object prop or the shape of arrays.

For example, the following component expects an array of objects. Each object requires id and name string proper-
ties.

import React from "react";
import { arrayOf, shape, string } from "prop-types";

const Stores = ({ stores }) =>

{stores.map(store =>

<li key={store.id}>
{store.name}

)}

;

Stores.propTypes = {
stores: arrayOf(
shape({

id: string.isRequired,
name: string.isRequired

})
)

};

export default Stores;

4.4.5 Custom prop types: sharing your shapes

You can easily share custom prop types by adding them to a file and exporting them for use in your project. For
example:

// customProps.js
import { string, shape } from "prop-types";

export const store = shape({
id: string.isRequired,
name: string.isRequired

});

// Stores.js
import React from "react";
import { arrayOf } from "prop-types";
import { store } from "./customProps.js";

const Stores = ({ stores }) =>

{stores.map(store =>

<li key={store.id}>
{store.name}

)}

;

(continues on next page)

12 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

Stores.propTypes = {
stores: arrayOf(stores).isRequired

};

export default Stores;

4.4.6 Specifying default prop values

You can also declare default values for props by declaring the defaultProps object on the component class or
function. For example:

import React from "react";
import PropTypes from "prop-types";

export default class Heading extends React.Component {
static propTypes = {
backgroundColor: PropTypes.string,
color: PropTypes.string,
children: PropTypes.node.isRequired

};

static defaultProps = {
backgroundColor: "black",
color: "white"

};

render() {
const style = {

backgroundColor: this.props.backgroundColor,
color: this.props.color

};

return (
<h1 style={style}>

{this.props.children}
</h1>

);
}

}

This can be especially useful for func props as it stops a potential crash if an optional function prop is not supplied.
For example:

import React from "react";
import { func } from "prop-types";

const Button = ({ onClick }) =>
<div className="btn" onClick={onClick}>
Button

</div>;

Button.propTypes = {
onClick: func

};
(continues on next page)

4.4. prop-types 13

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

Button.defaultProps = {
onClick: () => {}

};

export default Button;

Using default prop values in stateless functional components

Rather than declaring defaultProps for stateless functional components, you can use a combination of destruc-
turing and default parameter values instead. For example:

import React from "react";
import { string, node } from "prop-types";

const Heading = ({ children, backgroundColor = "black", color = "white" }) => {
const style = {
backgroundColor,
color

};

return (
<h1 style={style}>

{children}
</h1>

);
};

Heading.propTypes = {
backgroundColor: string,
color: string,
children: node.isRequired

};

export default Heading;

4.5 Stateless Functional Components

Stateless functional components are React components as JavaScript functions. They can be used for components that
do not use any lifecycle methods other than render and do not use any state.

• Concerned with how things look.

• AKA as presentational or dumb components.

• Functional programming paradigm: stateless function components are pure functions of their props.

• Props passed as the first function parameter.

• Simply return the component JSX: the same as the class render method.

• No state, no lifecycle methods.

• Easy to test.

• Easy to re-use/share.

14 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• Make no assumptions about application state or the data source.

• Can be combined with container components (which may have state and may know about the data source).

4.5.1 Example

A simple greeting component: it displays a name and calls a prop when clicked.

Note that ES6 arrow functions are preferred.

import React from "react";
import { func, string } from "prop-types";

const Greeting = ({ onClick, name }) =>
<h1 onClick={onClick}>
Hello, {name}

</h1>;

Greeting.propTypes = {
onClick: func,
name: string.isRequired

};

export default Greeting;

4.5.2 Simple snapshot testing

You can quickly test a simple component like this using snapshot testing. For example:

import React from "react";
import renderer from "react-test-renderer";
import Greeting from "../Greeting";

it("renders", () => {
expect(renderer.create(<Greeting name="The name" />)).toMatchSnapshot();

});

4.6 Containers

Containers are combinations of state and presentational components.

• Concerned with how things work.

• Usually ES6 class components with state.

• Render Re-usable stateless functional components.

• Knowledge about the data source and/or the application state.

• Commonly used with react-redux.

• Often generated using higher order components (HOCs).

4.6. Containers 15

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.6.1 Example

Here is a simple presentational component that renders a styled IP address:

import React from "react";
import { string } from "prop-types";

const IPAddress = ({ ip }) => {
const styles = {
container: {

textAlign: "center"
},
ip: {

fontSize: "20px",
fontWeight: "bold"

}
};
return (
<div style={styles.container}>

<div style={styles.ip}>
{ip}

</div>
</div>

);
};

IPAddress.propTypes = {
ip: string

};

export default IPAddress;

And here is an example container for this component. The container knows about the data source (in this case how to
fetch the current IP.)

Notice the following characteristics:

• It is an ES6 class.

• It has state.

• It is using component lifecycle (componentDidMount).

• It is acting as a wrapper for the IPAddress component.

import React from "react";
import IPAddress from "./IPAddress";

export default class IPAddressContainer extends React.Component {
state = { ip: "" };

componentDidMount() {
window

.fetch("https://api.ipify.org?format=json")

.then(response => response.json())

.then(response => {
this.setState({ ip: response.ip });

});
}

(continues on next page)

16 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

render() {
return <IPAddress ip={this.state.ip} />;

}
}

4.7 Higher Order Components

Higher Order Components (or HOCs) are used to transform a component into another component.

• A HOC is a function that takes a component and returns a new component.

• Made possible due to the compositional nature of React.

• Often used to inject additional props into an existing component.

• Useful for creating containers.

• A popular example is the react-redux connect function.

• Can be used to re-use code, hijack the render method and to manipulate existing props.

4.7.1 Example: IP address

The following HOC function will fetch the IP address and inject a prop called ip into any component. This is an
example of using a class as the container.

import React from "react";

const withIPAddress = Component => {
return class extends React.Component {
state = { ip: "" };

componentDidMount() {
window

.fetch("https://api.ipify.org?format=json")

.then(response => response.json())

.then(response => {
this.setState({ ip: response.ip });

});
}

render() {
return <Component ip={this.state.ip} {...this.props} />;

}
};

};

export default withIPAddress;

Notice what’s happening here: we are exporting a function that accepts a component as a parameter and returns an
ES6 class.

To use this with an existing component we do something like this:

4.7. Higher Order Components 17

https://codesandbox.io/s/RBxmkgl0

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

import React from "react";
import { string } from "prop-types";
import withIPAddress from "./withIPAddress";

const SimpleIPAddress = ({ ip, color = "black" }) =>
<p style={{ color }}>
{ip}

</p>;

SimpleIPAddress.propTypes = {
ip: string

};

export default withIPAddress(SimpleIPAddress);

We export the result of calling withIPAddress, passing in the component in which we want the ip prop injected.

4.7.2 Example: language

Here’s another example of a HOC that injects the current browser language setting into any component as a prop called
language. In this case we are using a stateless functional component as the container.

// withLanguage.js
import React from 'react';

const withLanguage = Component => props =>
<Component {...props} language={navigator.language} />;

export default withLanguage;

// MyComponent.js
import React from "react";
import { string } from "prop-types";
import withLanguage from "./withLanguage";

const MyComponent = ({ language }) =>
<div>
Browser language: {language}

</div>;

MyComponent.propTypes = {
language: string

};

export default withLanguage(MyComponent);

4.8 Chaining HOCs

Note that you can also chain HOCs together to create a new component that combines them all. For example:

import React from "react";
import { string } from "prop-types";
import withLanguage from "./withLanguage";

(continues on next page)

18 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

import withIPAddress from "./withIPAddress";

const MyComponent = ({ language, ip }) =>
<div>
<div>

Browser language: {language}
</div>
<div>

IP address: {ip}
</div>

</div>;

MyComponent.propTypes = {
language: string,
ip: string

};

export default withLanguage(withIPAddress(MyComponent));

4.9 Functions as Children

An alternative pattern to HOCs is functions as children where you supply a function to call as the child of a container
component: this is the equivalent of a render callback. Like HOCs you are decoupling your parent and child and it
usually follows a similar pattern of a parent that has state you want to hide from the child.

This has some advantages over traditional HOCs:

• It does not pollute the props namespace. HOCs have an implicit contract they impose on the inner components
which can cause prop name collisions especially when combining them with other HOCs.

• You do not need to use a function to create the container: you use simple composition instead.

• Developers do not need to call an HOC function to create a new wrapped component which can simplify the
code: they simply export their child components as normal.

In order for this to work you need to use a function as the special children prop and have the outer container
component call this function when rendering.

For example, here is a component that exposes the browser language:

import React from 'react';
import { func } from 'prop-types';

const Language = ({ children }) =>
<div>
{children(navigator.language)}

</div>;

Language.propTypes = {
children: func,

};

export default Language;

The component simply treats the children prop as a function and calls it. It can be used like this:

4.9. Functions as Children 19

https://codesandbox.io/s/Q8DzMRVq

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

<Language>
{language =>
<p>

Browser language: {language}
</p>}

</Language>

The child node of <Language> is a function which returns the JSX to render.

Now let’s imagine a component that calls an API and uses state to store the status, response and error.

import React from 'react';
import { string, func } from 'prop-types';

export default class CallAPI extends React.Component {
static propTypes = {
api: string,
children: func,

};

state = {
isFetching: false,
data: {},
error: '',

};

async componentDidMount() {
this.setState({ isFetching: true });
try {

const response = await fetch(this.props.api);
const data = await response.json();
this.setState({ isFetching: false, data });

} catch ({ message }) {
this.setState({ isFetching: false, error: message });

}
}

render() {
return (

<div>
{this.props.children({ ...this.state })}

</div>
);

}
}

The component makes an API call (specified with a prop) and maintains the state of the call. It renders by calling a
function and passing through a copy of the state as an object.

It could be used like this:

<CallAPI api="https://api.ipify.org?format=json">
{({ isFetching, data, error }) => {
if (isFetching) {

return <p>Loading...</p>;
}
if (error) {

return <p>Error: {error}</p>;

(continues on next page)

20 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

}
return <p>Data: {JSON.stringify(data)}</p>;

}}
</CallAPI>

And of course you can render normal components in the callback, for example:

<CallAPI api="https://api.ipify.org?format=json">
{

props => <MyComponent {...props} />
}
</CallAPI>

There is a caveat to using this pattern: they cannot be optimised by React because they change
on every render (a new function is declared on every render cycle). This rules out using
shouldComponentUpdate and React.PureComponent which may lead to performance issues.
Use this pattern wisely.

4.10 Events

When using JavaScript DOM and window events we usually need this to point to our component instance.

Spot the bug in this code:

import React from "react";

export default class BindBug extends React.Component {
state = { toggled: false };

onClick(e) {
this.setState({ toggled: !this.state.toggled });

}

render() {
const style = {

fontSize: "36px",
color: this.state.toggled ? "white" : "black",
backgroundColor: this.state.toggled ? "red" : "yellow"

};

return (
<div style={style} onClick={this.onClick}>

Click me
</div>

);
}

}

When you click on the <div> the onClick function handler is called which then tries to call this.setState.
But the handler has not bound this to the component instance and it ends up as null which causes the code to
crash.

4.10. Events 21

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.10.1 Binding events

To make this work we need to bind the onClick function to this. There are two ways to do this:

ESNext property initialize syntax (recommended)

The most readable way to do this is via an ESNext property initializer in conjunction with an arrow function. Arrow
functions declared in this way are bound to this automatically:

import React from "react";

export default class BindClassMethod extends React.Component {
state = { toggled: false };

onClick = e => {
this.setState({ toggled: !this.state.toggled });

};

render() {
const style = {

fontSize: "36px",
color: this.state.toggled ? "white" : "black",
backgroundColor: this.state.toggled ? "red" : "yellow"

};

return (
<div style={style} onClick={this.onClick}>

Click me
</div>

);
}

}

Notice the syntax used here:

handlerName = (params) => { ... }

This is the best option: it is less code and even though this syntax is experimental it is used widely at Facebook.

Here’s another example: a component that uses window.setInterval to update a counter every second:

import React from "react";

export default class Timer extends React.Component {
state = { counter: 0 };

componentDidMount() {
this.timerId = window.setInterval(this.onTimer, 1000);

}

componentWillUnmount() {
window.clearInterval(this.timerId);

}

onTimer = () => {

(continues on next page)

22 Chapter 4. React Best Practices

https://codesandbox.io/s/gJ6nymBE9

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

this.setState(prevState => ({ counter: prevState.counter + 1 }));
};

render() {
return (

<p>
Counter: {this.state.counter}

</p>
);

}
}

Note the following:

• The timer ID is stored so it can be cleared when the component unmounts.

• The function version of setState is used.

Alternatively you could use an inline arrow function: this will ensure this has the correct context:

import React from "react";

export default class Timer extends React.Component {
state = { counter: 0 };

componentDidMount() {
this.timerId = window.setInterval(() => {

this.setState(prevState => ({ counter: prevState.counter + 1 }));
}, 1000);

}

componentWillUnmount() {
window.clearInterval(this.timerId);

}

render() {
return (

<p>
Counter: {this.state.counter}

</p>
);

}
}

Constructor binding

Another common way of binding is to add a constructor to your class and use Function.prototype.bind:

import React from "react";

export default class BindConstructor extends React.Component {
state = { toggled: false };

constructor() {
super();
this.onClick = this.onClick.bind(this);

(continues on next page)

4.10. Events 23

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

}

onClick(e) {
this.setState({ toggled: !this.state.toggled });

}

render() {
const style = {

fontSize: "36px",
color: this.state.toggled ? "white" : "black",
backgroundColor: this.state.toggled ? "red" : "yellow"

};

return (
<div style={style} onClick={this.onClick}>

Click me
</div>

);
}

}

Although this method is not relying on any experimental syntax it suffers from the following issues:

• It requires you adding a constructor.

• You have to remember call super in the constructor before doing anything else.

• It is more code.

4.10.2 Sharing event handlers

Sometimes it is useful to share the share event handlers for your components and there is a simple trick to do this using
the DOM name attribute (which is exposed as a prop for most React components):

import React from "react";

export default class DetailsForm extends React.Component {
state = {
name: "",
email: "",
phone: ""

}

onChange = e => {
this.setState({

[e.target.name]: e.target.value
});

}

render() {
return (

<div>
<input name="name" value={this.state.name} onChange={this.onChange} />
<input name="email" value={this.state.email} onChange={this.onChange} />
<input name="phone" value={this.state.phone} onChange={this.onChange} />

(continues on next page)

24 Chapter 4. React Best Practices

https://codesandbox.io/s/vgAwR1Pxn

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

</div>
)

}
}

This takes advantage of the JavaScript computed property name syntax to update the state. Notice how the name
prop for each <input> matches the corresponding state property: this allows us to share a single onChange handler
with all three components.

Although this looks like magic it’s just JavaScript.

4.10.3 Handling the ENTER key in a form

If you want to let users press the ENTER key to submit a form then you will need to prevent the default submit
behaviour of a HTML form. For example:

import React from "react";

export default class LoginForm extends React.Component {
onSubmit = e => {
// Don't actually submit!
e.preventDefault();
// Enter key was pressed

};

render() {
return (

<form onSubmit={this.onSubmit}>
<input
name="username"
value={this.state.value}
onChange={this.onChange}

/>
<input
name="password"
type="password"
value={this.state.password}
onChange={this.onChange}

/>
<input type="submit" value="Login" />

</form>
);

}
}

This looks pretty much like a standard HTML form: the presence of the <input type="submit" /> ensures
the ENTER key works but by calling preventDefault on the submit event you can handle it yourself without the
application reloading.

4.10. Events 25

https://codesandbox.io/s/RnpV11EV

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.11 Conditional Rendering

Sometimes it is useful to render components based on your props or state and there are at least five different mecha-
nisms available to you (remember: it’s just JavaScript!)

Note that when you conditionally remove a component it will be re-mounted when you put it back
which means componentDidMount and other lifecycle methods will be called again. So if you are,
for example, fetching data when the component mounts, it will be called each time. To avoid this use
some form of show prop and either return null from your render or use CSS to hide the content.

4.11.1 Store the JSX in a variable

You can declare a variable to hold the JSX you wish to render. If your condition is not met and an undefined
variable is rendered, then React will simply ignore it.

let message;
if (someCondition) {

message = <p>Hello, world!</p>;
}

return (
<div>
<p>Conditional rendering</p>
{message}

</div>
)

4.11.2 Ternaries

You can also use a ternary. Using null or undefined is enough to stop anything being rendered:

return (
<div>
<p>Conditional rendering</p>
{someCondition ? <p>Hello, world!</p> : null}

</div>
)

4.11.3 Logical && operator shortcut

This relies on the fact the JavaScript will stop evaluating an && condition if the preceding checks return false.

return (
<div>
<p>Conditional rendering</p>
{someCondition && <p>Hello, world!</p>}

</div>
)

So if someCondition is true then your JSX is rendered, but if it’s false then your JSX will simply not be
evaluated.

26 Chapter 4. React Best Practices

https://codesandbox.io/s/QgoRP307

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

This is a very common method to conditionally render something in React.

4.11.4 Return null from your render method

Another common pattern seen in some 3rd-party component libraries is to conditionally render a component based on
a boolean prop. For example, you may have a prop called show that determines if the component should display at
all: if not then your render method can simply return null.

The advantage of this is that the component will not be mounted multiple times each time the show prop
changes which is useful if you are fetching data, setting timers, etc. in componentDidMount.

// MyComponent.js
const MyComponent = ({ show }) => {

if (show) {
return <p>Hello, world!</p>;

}
return null;

};

// SomeOtherComponent.js
...
return (

<div>
<p>Conditional rendering</p>
<MyComponent show={someCondition} />

</div>
)

4.11.5 Hide your component using CSS

A final way is to simply use CSS to hide your component. This also has the advantage of keeping your component
mounted.

// MyComponent.js
const MyComponent = ({ show }) => {

const style = {
display: show ? "block" : "none"

};

return <p style={style}>Hello, world!</p>;
};

// SomeOtherComponent.js
...
return (

<div>
<p>Conditional rendering</p>
<MyComponent show={someCondition} />

</div>
)

4.11. Conditional Rendering 27

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

4.12 Arrays

When dealing with arrays of JavaScript objects you can use Array.prototype.map to map from array elements
to React components. This is a very common pattern.

The following example shows a component that is rendering an array of stores by mapping each array entry to a new
 component.

import React from "react";
import { arrayOf, shape, number, string } from "prop-types";

const StoreList = ({ stores }) =>

{stores.map(store =>

<li key={store.id}>
{store.name}

)}

;

StoreList.propTypes = {
stores: arrayOf(
shape({

id: number.isRequired,
name: string.isRequired

}).isRequired
)

};

export default StoreList;

4.12.1 Keys

Keys help React identify which items have changed, are added, or are removed. Keys should be given to the elements
inside the array to give the elements a stable identity:

<li key={store.id}>{store.name}

Avoid using array indexes if array items can reorder.

stores.map((store, index) => <li key={index}>{store.name}

4.13 Writing Components

For this section we will use an example of a simple button component but the technique is the same no matter what
sort of component you are developing.

4.13.1 Designing a Button component

At first our button is very simple:

28 Chapter 4. React Best Practices

https://codesandbox.io/s/qly8Wqk0

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

<Button text="Click me" />

const Button = ({ text }) =>
<button className="btn">
{text}

</button>;

4.13.2 More requirements

Now we need support to render an icon:

<Button text="Click me!" iconName="paper-plane-o" />

const Button = ({ text, iconName }) =>
<button className="btn">
<i className={"fa fa-" + iconName} />
{" " + text}

</button>;

4.13.3 Even more requirements!

Now the button needs text formatting, icon positioning and icon size support. The code is getting complicated.

<Button text="Click me" textStyle="bold" iconName="paper-plane-o" iconPosition="top"
→˓iconSize="2x" />

const Button = props => {
const icon =
props.iconName &&
<i

className={classnames("fa fa-" + props.iconName, {
["fa-" + props.iconSize]: props.iconSize

})}
/>;

return (
<button className="btn">

{icon &&
(props.iconPosition === "top"
? <div>

{icon}
</div>

:
{icon + " "}

)}
{props.textStyle === "bold"

?
{props.text}

:

{props.text}
}

</button>

(continues on next page)

4.13. Writing Components 29

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

);
};

It is clear we cannot continue designing the component in this way for long before it becomes unmanageable.

4.13.4 Composition to the rescue

Instead of using lots of props and a single complicated render method split the component into smaller chunks and
use composition to render it instead.

<Button>
<FontAwesome
name="paper-plane-o"
size="2x"
block />

Click me
</Button>

const Button = ({ children }) =>
<button className="btn">
{children}

</button>;

const FontAwesome = ({ name, size, block }) =>
<i
className={classnames("fa", "fa-" + name, {

["fa-" + size]: size,
["center-block"]: block

})}
/>;

This takes advantage of the special children prop which is the cornerstone of composition using React.

4.13.5 Summary

You might need composition when:

• There are too many props

• There are props to target a specific part of the component (iconName, iconPosition, iconSize, etc.)

• There are props which are directly copied into the inner markup

• There are props which take a complex model object or an array

4.14 Unit Testing

Testing should be simple!

• React components are easy to test.

• Presentational components (stateless functional components) should be treated as pure functions.

• Two common testing patterns are:

30 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

– DOM testing

* Find DOM nodes, simulate events

– Snapshot testing

* Compares files of JSON output

* Show the diff

4.14.1 Snapshot testing

Snapshot testing is a feature of Jest that can be used to test any JavaScript object. And thanks to a package called
react-test-renderer you can convert a React component to an object to use with snapshot testing.

For example:

import React from "react";
import renderer from "react-test-renderer";
import IPAddress from "../IPAddress";

it("renders", () => {
const component = renderer.create(<IPAddress ip="127.0.0.1" />);
expect(component).toMatchSnapshot();

});

When the test runs for the first time a special snapshot file is created in a sub-folder containing the JSON output of
the render. The next time you run the test it generates new output and compares it with the snapshot: if there are any
differences then the test has failed and you are presented with the object diff. At this point you can decide to regenerate
the snapshot.

4.14.2 DOM testing

Alternatively you can render your components into a in-memory DOM (jsdom).

• Use react-dom/test-utils or enzyme

• Find DOM nodes and check attributes

• Simulate events

• Mock event handlers

Note that this does not work with stateless functional components unless you wrap them with a class (you
can use a simple HOC for this.)

For example:

import React from "react";
import Greeting from "../Greeting";
import ReactTestUtils from "react-dom/test-utils";

it("renders", () => {
const onClick = jest.fn();
const instance = ReactTestUtils.renderIntoDocument(
<Greeting name="The name" onClick={onClick} />

);
const h1 = ReactTestUtils.findRenderedDOMComponentWithTag(instance, "h1");
ReactTestUtils.Simulate.click(h1);

(continues on next page)

4.14. Unit Testing 31

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

expect(onClick).toHaveBeenCalled();
});

In this example we use ReactTestUtils to render the component, look for the <h1> tag and simulate a click
event. We then check that our onClick prop was called.

Wrapping stateless functional components for ReactTestUtils

ReactTestUtils does not play well with stateless functional components. To fix this simply wrap your component
with a class when testing. You can use an HOC for this in your project:

const withClass = Component => {
return class extends React.Component {
render() {

return <Component {...this.props} />;
}

};
};

const Component = withClass(Greeting);
const instance = ReactTestUtils.renderIntoDocument(

<Component name="The name" onClick={onClick} />
);

4.15 State

4.15.1 State updates may be asynchronous!

React may batch multiple setState() calls into a single update for performance.

Because this.props and this.state may be updated asynchronously, you should not rely on their values for
calculating the next state.

// Wrong
this.setState({
counter: this.state.counter + this.props.increment

});

Instead, you can use the function version of setState.

// Correct
this.setState((prevState, props) => ({
counter: prevState.counter + props.increment

}));

Always use this version of setState if you need access to the previous state or props.

State update functions can be extracted and tested

Another benefit of using the function version of setState is you can extract them from your class, turn them into
thunks and add tests for them. If you stick to using immutable data for your state then the update functions should be
pure which makes them even easier to test. You can even share state update functions amongst your components.

32 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

For example:

// Stores.js
export const addStore = (id, name) => prevState => ({

stores: [...prevState.stores, { id, name }]
});

export default class Stores extends React.Component {
state = { stores: [] };

onAddStore = () => {
this.setState(addStore("ID", "NEW STORE NAME"));

}
...

}

// Stores.test.js
import { addStore } from "./Stores";

it("adds a store to the state", () => {
const prevState = {
stores: [

{
id: "1",
name: "Store 1"

},
{

id: "2",
name: "Store 2"

}
]

}
expect(addStore("3", "Store 3")(prevState)).toMatchSnapshot();

});

4.15.2 Immutable data

• React tends to favour functional programming paradigms

• Mutable data can often be a source of bugs and unintended side effects

• Using immutable data can simplify testing

• Redux relies on immutable state to work correctly

• You don’t necessarily need ImmutableJS: ES6 will usually suffice

• Immutable data can be used alongside React.PureComponent for a very simple performance boost

Immutable arrays

Here is an example of using Array.prototype.map to clone an array and modify a single element:

this.setState(prevState => ({
items: prevState.items.map(item => {

(continues on next page)

4.15. State 33

https://codesandbox.io/s/D9mx04lQA

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

if (item.id === idToFind) {
return { ...item, toggled: !item.toggled };

}
return item;

})
}));

You can make a shallow copy of an array and add a new element at the same time using the array spread operator:

this.setState(prevState => ({
items: [...prevState.items, { id: "3", name: "New store" }]

}));

You can remove elements from an array using Array.prototype.slice:

this.setState(prevState => ({
// Remove the first element
items: prevState.items.slice(0, 1)

}));

4.16 Props

4.16.1 Destructuring

You can increase code readability be destructuring props. For example:

render() {
const { name, email } = this.props;

return (
<div>

<p>{name}</p>
<p>{email}</p>

</div>
)

}

4.16.2 Don’t pass on unknown props

If you are wrapping components with another do not pass down any props that the wrapped component does not know
about. This will generate a console warning in the browser. For example, this is wrong:

const Input = props => {
const type = props.isNumeric ? "number" : "text";
// <input> does not know about isNumeric
// This will generate a console warning
return <input {...props} type={type} />;

};

Input.propTypes = {
isNumeric: PropTypes.bool

};

34 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

To fix this you can use the object spread operator to extract the props you care about and add the remaining ones to
a single variable. For example:

const Input = props => {
const { isNumeric, ...other } = props;
const type = isNumeric ? "number" : "text";
return <input {...other} type={type} />;

};

Input.propTypes = {
isNumeric: PropTypes.bool

};

4.17 Pure Components

Premature optimization is the root of all evil.

Most of the time you are probably not going to worry about performance but there are times when you might to avoid
potentially costly renders and this is where React.PureComponent can help.

When React needs to reconcile the virtual DOM it will call your component render method and compare it with
an in-memory copy. If anything has changed then the real DOM is updated. Usually this is fast but if your render
function is slow (perhaps it renders many components) then there could be a delay while reconciliation takes place.

However, there is a React lifecycle method you can override called shouldComponentUpdate and if you return
false from this then your render method will not be called.

To make this easier to manage you can derive your component class from React.PureComponentwhich overrides
shouldComponentUpdate and performs a simple (and fast) value comparison of your props and state: if there
are no changes then the function returns false and no render will occur.

So if your render method renders exactly the same result given the same props and state then you can use React.
PureComponent for a potential performance boost.

React performs a value comparison of your props and state and not a deep object comparison. Therefore
you should use immutable data for all props and state to ensure this comparison works as expected:
otherwise your component may not render when you expect it to.

For example:

import React from "react";
import PropTypes from "prop-types";

export default class MyList extends React.PureComponent {
static propTypes = {
items: PropTypes.arrayOf(

PropTypes.shape({
id: PropTypes.number,
text: PropTypes.text

})
)

};

render() {
// Only called if the props have changed

(continues on next page)

4.17. Pure Components 35

https://codesandbox.io/s/qjnj3n2Ly

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

return (
<List>

{this.props.items.map(item =>
<ListItem key={item.id} primaryText={item.text} />

)}
</List>

);
}

}

If the items prop changes (is replaced with a new copy of the data) then the component will render.

4.18 Project Structure

There are numerous ways to structure your React project. One common layout for components:

• Components are located in src/components/ComponentName.js.

• Component-specific CSS is located in src/components/ComponentName.css.

• Component tests are located in src/components/__tests__/ComponentName.test.js.

• Component stories are located in src/components/__stories__/ComponentName.stories.js

• React Styleguidist component examples (if applicable) are located in src/components/__examples__/
ComponentName.md

If you’re using redux:

• Code to initialise your store is located in src/store.js

• Reducers are located in src/reducers

• Action creators are located in src/actions

• Selectors are located in src/selectors

• Action constants are located in src/constants/actions.js

Try and limit the number of files in the root src folder but be careful not to overdo your folder structure. There is
nothing wrong with lots of files in one folder (Facebook use a monorepo: they have over 30,000 components in a
single folder!)

An example layout may look like this:

src\
index.js
App.js
setupTests.js
components\
__tests__\

Button.test.js
__stories__\

Button.stories.js
Button.js
Button.css

containers\
__tests__\

MainPage.test.js

(continues on next page)

36 Chapter 4. React Best Practices

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

MainPage.js
utils\
__tests__\

sharedStuff.test.js
sharedStuff.js
testUtils.js

Another layout involves a separate folder with each component containing the source code, CSS, tests, stories and
any other component-specific files. For this to be manageable you need to also add an index.js that imports the
component and this is not recommended for beginners.

4.19 Summary

• It’s just JavaScript.

• Use functional programming patterns and techniques where possible.

• Use containers/presentational components.

• Always declare your prop types.

• Take advantage of ES6 and ESNext.

• Use immutable data.

• Use snapshot testing.

• Use the function form of setState if you need access to the previous state or props.

• Favour small components and composition when building your UI.

• Don’t ignore console warnings.

4.19. Summary 37

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

38 Chapter 4. React Best Practices

CHAPTER 5

Using SB-Components

dev guide for installing and running sb-components

5.1 Install peer dependencies

• react

• react-dom

• bootstrap

• jquery

• react-modal

• font-awesome

• typeface-pt-sans-caption

• typeface-pt-serif

• type-pt-serif-caption

• @sbac/SBAC-Global-UI-Kit

5.2 Install sb-components using npm:

npm install --save @osu-cass/sb-components

5.3 Typings

Included in lib

39

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

5.4 Required Assets

Copies images from sbac global to project public directory Use webpack copy

npm install --save-dev copy-webpack-plugin

Webpack config:

new CopyWebpackPlugin([
{

from: path.join(__dirname, 'node_modules', '@sbac/sbac-ui-kit/src/images/'),
to: path.join(__dirname, 'public', 'Assets/Images')

}
])

5.5 Required Less

In order to use the sbac global style sheet, use a less file to bundle peer dependencies bootstrap, font-
awesome, sbac-ui, and this project

• See example in Assets/Styles/bundle.less

• Sbac-ui uses default bootstrap constants and can be overwritten during this step

Create a less file

//** bundle.less
//## Peers
@import "~bootstrap/less/bootstrap.less";
@import "~font-awesome/less/font-awesome.less";
@import "~@sbac/sbac-ui-kit/src/less/sbac-ui-kit.less";
@import "~@osu-cass/sb-components/lib/Assets/Styles/sb-components.less";

//## Custom Styles
{your styles here}

40 Chapter 5. Using SB-Components

CHAPTER 6

Accessibility

6.1 Minimum Requirements

• Use a keyboard to interact with components (tab, space, enter, shift-tab)

• Icons should have aria-hidden

• Links or buttons with no text need to have aria-label or labeled-by. More info here

• Roles should be used unless input (input type does this automatically). More info here

• Check contrast of components being used (storybook accessibility tab) or color-contrast-tool

• Storybook accessibility tab should have no issues

6.2 Resources

• A11y here

• React Accessibility here

• MDN button and links here

• MDN Accessibility here

• Font awesome here

• MDN Aria roles here

• Tables here

6.3 TSLint

• Linting is enabled for this project to determine if elements are compliant

41

http://fontawesome.io/accessibility/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://webaim.org/resources/contrastchecker/
http://a11yproject.com/checklist.html
https://reactjs.org/docs/accessibility.html
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_button_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://fontawesome.io/accessibility/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://webaim.org/techniques/tables/data

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

– Note this does not check for everything. Manual checks required

• Enable vscode tslint for the best experience when developing

42 Chapter 6. Accessibility

CHAPTER 7

Using NPM Link

This is the preferred way to try out changes in dependent projects

7.1 Setup

1. Run npm link within this project

2. Run npm link @osu-cass/sb-components

7.1.1 AP_ItemSampler

Steps for AP_ItemSampler

1. Follow npm link steps

2. Run npm run watch within this project

3. Any changes will be watched

4. ItemSampler, has hot-loading and will reload from this project automatically

43

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

44 Chapter 7. Using NPM Link

CHAPTER 8

Publish, Branching and Versioning

8.1 Versioning

Semantic versioning

All versions in npm should also be github releases using tags. Tag names are the version number.

• Official builds use major.minor.patch

– example: v1.1.0

• Pre-Release builds use major.minor.patch-alpha.x

– example: v1.2.1-alpha.3

8.2 Branching

• master, (default branch) contains current production code. Official builds and tags

• hotfix, immediate bug fixes, pre-release versions and tags. (hotfix => master)

– example: hotfix/1.2.1

• release, pre-release versions and tags (release => master)

– example: release/1.3.0

• dev, current dev code, (dev => release)

• feature, short-lived new feature code, (feature => dev)

– example: feature/acc-modal-style

45

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

8.3 Publish Npm Package

builds to lib directory and used in the npm package

webpack.config.js has a dev, prod, and a watch command. Running webpack tasks outputs to the lib directory.
There is a custom tsconfig.webpack.json to only include npm needed files and includes src directory.

8.3.1 Publishing

1. Update package.json with the correct version {major.minor.patch}

2. Run npm install and commit package.json and package.lock.json

3. Run npm run prepare to verify the package before pushing.

4. Run npm publish, you may need to setup login creds

5. Tag version git tag -a v{version}

6. Push commit and push tags git push and git push --tags

8.3.2 Local Dev

Develop with npm link instead of pushing versions

• Follow NpmLink

8.4 Continuous Integration, TravisCI

Travis will check code quality, conflicts, build, and tests. TODO: Linting support and NPM Publish

• Pull Request, determines if merge will succeed.

• Tags

– TODO: soon to come, npm publish

• Branch build, runs for each commit

– master will do a publish to github pages

8.5 Pull Requests

All changes to master and dev should be a Pull Request. Master and Dev are protected to prevent accidental pushes.
PR’s should be code reviewed (1 person required) and pass checks (travis ci, codacy, coveralls. . .) before accepting a
pull request.

46 Chapter 8. Publish, Branching and Versioning

NpmLink

CHAPTER 9

Site Styles

This project utilizes bootstrap and the sbac-global style overrides for buttons, typography, form-controls, and custom
button group. However, don’t use the bootstrap grid system instead use flex when you can.

9.1 Less

All project specific less files are included in Assets/Styles

• Custom.less includes any overrides to the imported bootstrap and/or sbac-global. Includes shared custom
less for the project that can be shared.

• Layout.less includes custom layout classes such as container and section

• Constants.less includes all static constants to be shared (sbac constants can be used)

9.2 SBAC Global style

• SBAC styleguide

• variables.less github

• colors.less github

9.3 Useful Links

• SBAC styleguide

• Flex cheatsheet

• More flex css-tricks

47

http://smarterapp.github.io/SBAC-Global-UI-Kit/index.html
https://github.com/SmarterApp/SBAC-Global-UI-Kit/blob/develop/src/less/variables.less
https://github.com/SmarterApp/SBAC-Global-UI-Kit/blob/develop/src/less/colors.less
http://smarterapp.github.io/SBAC-Global-UI-Kit/index.html
https://www.google.com/url?sa=t&source=web&rct=j&url=http://jonibologna.com/content/images/flexboxsheet.pdf&ved=2ahUKEwjBmc_ypJLZAhVP3mMKHfRpCIoQFjADegQICBAB&usg=AOvVaw1o_nBxiwBeB1sgSG1bOrs_
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

9.4 Layout

All pages must have a container class. Content needs to align with the navbar content. Page app must include a page
container.

9.4.1 With Page Title

<div className="container {page}-container">
<h2 className="page-title">Page Title</h2>
<div className="section section-light" style={style}>
<p>Test Body...</p>

</div>
</div>

9.4.2 With No Page Title

<div className="container {page}-container">
<div className="section section-light" style={style}>
<p>Test Body...</p>

</div>
</div>

9.4.3 With Full Body Styles

Helpful for Sample Items Website full page background

<div className="page-container {page}-page">
<div className="container {page}-container">

<div className="container section-light" style={style}>
<p>Test Body...</p>
</div>

</div>
</div>

48 Chapter 9. Site Styles

CHAPTER 10

How to Commit

basic structure
type(optional scope): a message

an example
feat: allow users to message each other directly

Users no longer have to communicate through public channels; user accounts are now
→˓treated as their own channels, so you can communicate with individuals directly.

Fixes #31

also valid
chore(dependencies): add webpack and relevant loaders

Types are pre-defined, enforced values, while scopes are optional. You can checkout the list of types with their
descriptions for more information. commitlint will tell you the available options when you get them wrong, but it’s up
to you to know which one is the most relevant.

49

https://github.com/commitizen/conventional-commit-types/blob/master/index.json
https://github.com/commitizen/conventional-commit-types/blob/master/index.json

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

50 Chapter 10. How to Commit

CHAPTER 11

Changes

11.1 Jan 2018 - Feb 2018

• Screen reader improvements and keyboard navigation fixes

• Improved layout of navbar, footer, and body with various screen devices

• Table row enhancements expands to display item, rubric, and information

• Style changes and layout updates to jump to filter

• Refactored Item Table

• Loading overlay for components and pages

• Dependent search options with Advanced Filters

• Fixed issues with Firefox and Safari styles

• Disabled rubric flag for about items to hide/show scoring information

• General style changes and layout updates based on user feedback

• Added functional testing for various components and advanced filter

• About Test Items changes to default loading state, layout, and error handling

• Added documentation on usage, building, branching, releasing, and development strategies

11.2 Dec 2017 - Jan 2018

• Item Table sorting

• Added sbac-global styles

• Added webpack build steps for other projects

• Added google fonts

51

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• Added jump back to filter link

• Advanced filter refactor and speed improvements

• Filter categories service to create, update and change dependent options

• Fixed issue with multi-select tags in Advanced Filter not being able to deselect

• Score guide pdf table styles and improvements

• Score guide pdf, tables, and rubric uses less constants

• Added test data mock area

• Advanced filter style changes

• Changed GET to POST for fetching pdf

• Auto download pdf instead of navigate to new page

• Required BasicFilter selections before fetching pdf

• Can rebuild filters from URL on refresh

• Fixed mis-aligned style table issues

• Created a process for selecting items in the table

• Created an ErrorPageContainer component

• Refactored to reduce code smells

52 Chapter 11. Changes

CHAPTER 12

Roadmap

12.1 1.1.0

• SBAC-ui-kit support

• Toggle between cards and item table

• Style improvements

• 80% code coverage

• TSLint check on travis builds

12.2 1.0

• Scoreguide and Sample Items Website components functional

• Code coverage

• Storybook

• Webpack library

• Typings!

53

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

54 Chapter 12. Roadmap

CHAPTER 13

Project Overview

13.1 Structure

• src

– feature directories

* tests, snapshots and functional tests

* ts and tsx files

– Assets

* Styles

• mocks

– feature directories

* mock data ts

• stories

– snapshots

– features directories

* tests (component ui tests)

• typings

– custom typings

• lib (build output)

– feature directories

* typings

– index.js (contains sb-component code)

– index.d.ts (contains list of typings)

55

SB𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• gh-site

– assets for github.io

– storybuild (build output)

– typedocs (build output)

13.1.1 src

Includes all feature code to be shared with projects. Code is separated out in feature directories. Please see styleguide.
Jest is used for functional testing including snapshots. All mock data for testing needs to be placed in project root
mocks.

13.1.2 mocks

Includes all mock data for src and stories.

13.1.3 stories

Uses storybook component development kit. Run npm run storybook and launch http://
localhost:6006. Each story will create a snapshot testing. All mock data should be placed in mocks.
Storybook supports hot module reloading (HMR).

13.1.4 typings

Custom typings for the project.

13.1.5 lib

includes build output for ts/tsx code. lib only includes js, styles, and typings for external use.

13.1.6 gh-site

Root directory for the github.io pages. tsdoc and storybook build output. tsdoc includes all the project code
level documentation auto generated from jsdoc format.

56 Chapter 13. Project Overview

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

57

	Project Setup
	Style Guide
	Visual Studio Code Environment
	React Best Practices
	Using SB-Components
	Accessibility
	Using NPM Link
	Publish, Branching and Versioning
	Site Styles
	How to Commit
	Changes
	Roadmap
	Project Overview
	Indices and tables

